368 research outputs found

    Managed Forgetting to Support Information Management and Knowledge Work

    Full text link
    Trends like digital transformation even intensify the already overwhelming mass of information knowledge workers face in their daily life. To counter this, we have been investigating knowledge work and information management support measures inspired by human forgetting. In this paper, we give an overview of solutions we have found during the last five years as well as challenges that still need to be tackled. Additionally, we share experiences gained with the prototype of a first forgetful information system used 24/7 in our daily work for the last three years. We also address the untapped potential of more explicated user context as well as features inspired by Memory Inhibition, which is our current focus of research.Comment: 10 pages, 2 figures, preprint, final version to appear in KI - K\"unstliche Intelligenz, Special Issue: Intentional Forgettin

    Traits: Correctness-by-Construction for Free

    Get PDF

    Runtime Verification of Correct-by-Construction Driving Maneuvers

    Get PDF

    Immutability and Encapsulation for Sound OO Information Flow Control

    Get PDF

    Information Flow Control-by-Construction for an Object-Oriented Language Using Type Modifiers

    Get PDF
    In security-critical software applications, confidential information must be prevented from leaking to unauthorized sinks. Static analysis techniques are widespread to enforce a secure information flow by checking a program after construction. A drawback of these systems is that incomplete programs during construction cannot be checked properly. The user is not guided to a secure program by most systems. We introduce IFbCOO, an approach that guides users incrementally to a secure implementation by using refinement rules. In each refinement step, confidentiality or integrity (or both) is guaranteed alongside the functional correctness of the program, such that insecure programs are declined by construction. In this work, we formalize IFbCOO and prove soundness of the refinement rules. We implement IFbCOO in the tool CorC and conduct a feasibility study by successfully implementing case studies

    Flexible Correct-by-Construction Programming

    Full text link
    Correctness-by-Construction (CbC) is an incremental program construction process to construct functionally correct programs. The programs are constructed stepwise along with a specification that is inherently guaranteed to be satisfied. CbC is complex to use without specialized tool support, since it needs a set of predefined refinement rules of fixed granularity which are additional rules on top of the programming language. Each refinement rule introduces a specific programming statement and developers cannot depart from these rules to construct programs. CbC allows to develop software in a structured and incremental way to ensure correctness, but the limited flexibility is a disadvantage of CbC. In this work, we compare classic CbC with CbC-Block and TraitCbC. Both approaches CbC-Block and TraitCbC, are related to CbC, but they have new language constructs that enable a more flexible software construction approach. We provide for both approaches a programming guideline, which similar to CbC, leads to well-structured programs. CbC-Block extends CbC by adding a refinement rule to insert any block of statements. Therefore, we introduce CbC-Block as an extension of CbC. TraitCbC implements correctness-by-construction on the basis of traits with specified methods. We formally introduce TraitCbC and prove soundness of the construction strategy. All three development approaches are qualitatively compared regarding their programming constructs, tool support, and usability to assess which is best suited for certain tasks and developers.Comment: arXiv admin note: substantial text overlap with arXiv:2204.0564
    • …
    corecore